
Dynamo: design, implementation, and evaluation of cooperative persistent object
management in a local area network

Jiong Yang1�, Wei Wang1, Silvia Nittel2, Richard Muntz2, and Vince Busam2

1 IBM T.J. Watson Research Center, 30 Sawmill River Road, Hawthorne, NY10532, USA
2 Department of Computer Science, UCLA, Los Angeles, CA 90095, USA

SUMMARY

In light of advances in processor and networking technology, especially the emergence of
network attached disks, the traditional client-server architecture of persistent storage
systems has become suboptimal for many computation/data intensive applications.
In this paper, we introduce a revised architecture for persistent object management
employing network attached storage: the dynamic object server environment (Dynamo).
Dynamo introduces two main architectural innovations:(1) To provide high scalability,
the object management functions are mainly performed cooperatively by the clients in
the system. Furthermore, data is transferred directly to the client's cache from network-
attached disks, thus avoiding copies from a disk to the server bu�er and then over the
network to the client. Other systems have an a priori assignment of \object management"
functions to speci�c nodes. (2) Dynamo uses a cooperative cache management which
employs a decentralized lottery-based page replacement strategy with a novel technique
which attempts to put a page replaced from one node into the cache of another
node which is likely to access the page in the near future. We show via performance
benchmarks run on the Dynamo system and simulation results how this architecture
increases the system's adaptability, scalability and cost performance.

key words: Persistent object management, Cooperative caching, System architecture

Introduction

High speed local area networks and increasingly powerful desktop machines have led
to the notion of clusters of PCs as servers. But servers, whether they be clusters or
mainframes are con�gured a priori and, with growing workloads or in the case of
workloads with \oating skew", a server can become a bottleneck. One approach to
more scalable architecture is to use the client platforms to implement a cluster server;
so each client executes not only the usual client side software but also, part of its
resources are used to implement one node of a cluster server. The motivation is clearly
that the \server resources" grow in direct proportion to the number of clients which
leads to a scalable system. There are also challenges to be overcome to make this
approach work in practice.
One challenge is to build a system that adapts to a changing con�guration. Client

machines may fail but also, new machines may be added or decommissioned and the
system needs to automatically adapt to these changes. In addition, it is becoming
more common for portable machines to be connected in the morning and disconnected
in the evening. Particularly as this latter mode of operation becomes more popular

�Correspondence to: IBM T.J. Watson Research Center, 30 Sawmill River Road, Hawthorne, NY10532, USA

research staff member, ibm 1

the system must be able to quickly and automatically adapt to con�guration changes.
Further challenges involve performance issues; in particular the balancing of workload
across nodes. Most proposed designs for similar systems rely on a �ne grained,
static partitioning of data objects among nodes (e.g., hashing of data block IDs to
determine the node responsible for the data block). With an unknown or changing
system con�guration and with shifting hot spots in data access, we suggest that a
more exible approach to adaptability is needed. Cache management presents some
interesting characteristics in this type of system. For example, from the viewpoint of
any given client there are three levels of memory: (a) local main memory, (b) main
memory on another node, and (c) secondary storage. Working sets of individual clients
can overlap in various ways. We have found, for example, that when a page is replaced
from one node, its placement to another node can exploit knowledge of what relative
a�nity (i.e., likelihood of reference) for the page each node has in order to reduce fault
rates.

Problem Statement

Here we briey state the major assumption we make about the system environment.

1. Data is stored on Network Attached Disks. Network attached storage technology
has been widely accepted for LAN and SAN (storage area network). Today,
the price of a network-attached disk is almost the same as the PCI attached
disk. Thus, LANs will increasingly employ network attached storage as their
main secondary storage devices. As mentioned before, since data can be accessed
almost equally e�ciently from any node in a LAN, it is feasible to have a dynamic
partitioning of the object management within a distributed object manager.

2. Trusted peers. In general, the machines in a LAN belong to the same
administrative domain, thus it is reasonable to assume they can trust each other.
Since security among peer nodes in a LAN is a less urgent issue, we assume that
whether a node should assume the responsibility for managing a set of data can
be determined solely on the basis of performance (e.g., whether this node has
enough computer resources), reliability, etc.

3. Symmetric access time. We assume that the LAN is connected via a high speed
communication network, such as Ethernet, Myrinet, Fibre Channel Arbitrated
Loops, etc. In addition, the average number of nodes in a LAN ranges from ten
to several hundred, and the topologies of the communication network is often
straightforward. As a result, the access time for node A to access the data in
node B's memory is more or less the same as to access the data in node C's
memory. Moreover, the access time is several orders of magnitude less than to
access data from a disk. This provides the motivation and justi�cation for moving
cached pages to other nodes' memory.

In the context of these assumptions about the computing environment, we address
the design and performance evaluation of a persistent object management system
in this paper. The overview section gives an overview of the proposed software
architecture while the object management migration and cooperative caching sections

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

2 j. yang, et.

go into the details of the design and the motivations for the design decisions. We
discuss fault tolerance issues in the fault tolerance section. A description of the current
prototype and the results of a detailed performance study are given in the experimental
results section. The related work section discusses some previous work and a brief
summary is given in the conclusion section.

Overview of Dynamo

The Dynamo architecture consists of four layers: the disk I/O layer, the cooperative
cache manager layer, the object manager layer, and the coordinator layer. These four
layers interact with each other as shown in Figure 1. We give an overview of the
architecture from the bottom up.

Object Manager

Applications

Object-Pages Mapping
Cache Table Lookup

Local Ownership Table Maintenance

Machine

Core Machine

Coordinator

 Global Ownership Table Maintenance

Disk Block Allocation Strategies
 Page-Block Mapping

I/O Manager

Disk Controller

Object Manager

Applications

Object-Pages Mapping
Cache Table Lookup

Local Ownership Table Maintenance

Machine

Page

Change of Ownership

Disk

Distributed Cache Manager
Cooperative Cache Manager

Cache Table for Owned Objects

Local Cache manager
Local Cache Maintenance

Distributed Cache Manager
Cooperative Cache Manager

Cache Table for Owned Objects

Local Cache manager
Local Cache Maintenance

Figure 1. Dynamo Architecture

Disk I/O Layer

The lowest layer of Dynamo is the I/O layer that provides data I/O from and to
storage devices. We assume that the storage devices are disks or disk arrays. The

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 3

I/O layer maps objects and data pages to storage locations on a storage device in
a similar fashion to the I/O layer in a conventional object system. To obtain high
bandwidth, an object may be striped over several devices (e.g., disks, disk arrays,
etc.). A large object can be viewed as a sequence of pages. Di�erent pages of an object
are normally stored in contiguous physical storage space, but might also be stored
on di�erent devices if the object is very large. The disk I/O layer resides on the disk
controllers of the network attached storage devices. The disk I/O layer determines the
data block a page is written to. Each page is uniquely identi�ed in Dynamo. The policy
for choosing a block varies for di�erent applications. In the UNIX environment, a log
structured �le system scheme might employed, so that the next block physically to the
most recently written block is chosen to store the modi�ed page. On the other hand,
for database applications, it is often necessary to maintain data logically clustered
to improve the retrieval time. Thus, the block allocation policy for data pages is
application dependent.

Cooperative Cache Manager Layer

In a LAN, the working set size of local applications will vary over time resulting
in time when the working set of an individual node exceeds the node's local physical
memory; however, the aggregate size (i.e., of the union) of all working sets is less
than the aggregate nodes' combined main memory. Therefore, it is bene�cial if local
working sets can \spill over" to other node whose main memory is not fully utilized.
To achieve this, Dynamo treats main memory from all nodes as a pool of global cache
memory with a cooperative cache manager layer on each node. Each node treats its own
memory as the local cache and memory on other nodes as a remote cache, intermediate
between its local cache and secondary storage. The cooperative cache managers are
responsible for managing the remote caches as well as their own local caches.
The cooperative cache manager consists of two components: the local cache manager

and the distributed cache manager (DCM) which collaborates with other distributed
cache managers. The cooperative cache manager has two major functions: First, it
performs cache replacement of its local cache. When a new page is needed and the
local memory is fully utilized, existing pages have to be replaced. The replaced pages
can be evicted to the global cache (i.e., to some other node's memory), evicted to
secondary storage (if the page is dirty), or simply discarded (if the page is clean,
and maybe replicated). A distributed cache manager de�nes, in concert with other
cache managers, a decentralized scheme for global cache management. Using intention
sets and a lottery-based scheme, the distributed cache manager determines how and
whereto local pages should be evicted.
The second function of the cooperative cache manager is the mapping between the

logical address of an object, and its memory address.

Object Manager Layer

In a traditional persistent object management system, a large fraction of system's
resources are allocated to server functions. These functions can be broken down into

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

4 j. yang, et.

storage management, bu�er management, page management, etc. In Dynamo, large
parts of these functions are distributed to nodes in the LAN and are handled by them
in a cooperative fashion. We distinguish two software components in Dynamo which
provide the functionality of a traditional persistent object system: the coordinator and
the object managers. The coordinator is a small remaining part which runs on one
or more well-know core nodes, while the object managers execute on any nodes and
perform most of the traditional data management functions.

Coordinator Layer

The coordinator manages centralized information for all nodes, and coordinates
which data partition is managed by which nodes, keeps track of which data is managed
by which object manager, informs nodes about owners, and participates in ownership
transfers between nodes as well as transaction management. Because of its central role,
a coordinator (or a set of cooperating coordinators) run on a backbone of reliable, well-
known nodes.
In the following sections, we describe the contributions and speci�cs of Dynamo such

as the dynamic data management strategy and the decentralized cache management
strategy for its cooperative cache in detail.

Dynamic Object Management

In Dynamo, object server functionality is
migrated to nodes in the LAN instead being performed on a centralized core node

(or several core nodes). The main idea of Dynamo is to migrate the management and
control of data dynamically to any machine (preferably less loaded or idle machines),
and thereby, automatically adapt the persistent object management system to the
available resources (CPU, memory, machines) in the LAN.

Coordinator and Object Management

Coordinator

As the name implies, the coordinator has a delegating, coordinating, and book
keeping role in Dynamo. It manages the information that has to be kept centrally
for all nodes; however, access to this information is kept minimal to avoid the analog
of the server bottleneck.
According to the size, the system can employ a single, central coordinator or a

distributed coordinator. In the case of a distributed coordinator scheme, the set of
nodes running a coordinator is known to all nodes in the LAN. The coordinator has
several responsibilities: (1) keep track of all network-attached storage (NAS) space in
the LAN, (2) keep track of which object manager manages which data.
The coordinator responds to an initial data request by the local object manager on a

node. The coordinator identi�es the data `chunk' (or management entity) to which the

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 5

requested data belongs, and whether there is already an object manager assigned to
manage this data. If not, the coordinator identi�es a sizable `chunk' of data, packages
all necessary data management information for that data so that the object manager
can independently perform all object management functions (e.g., consistency control,
etc.), and sends this information to the requesting object manager. When the workload
on the local node is too high and/or local application does not need some speci�c data
any longer, the object manager can relinquish the data management responsibility for
selected data either to the coordinator or to another node.

Object manager

The object manager performs most of the traditional data management functions in
Dynamo. It interacts with application(s) and cooperates with the cache manager on
the same node.
In Dynamo, an object manager does not manage a �xed portion of the system's

data as in other systems. Instead, a dynamically chosen partition of the overall data is
assigned to an object manager. The size of the data partition depends on the overall
workload on the node. In general, a large amount of data is assigned to an object
manager initially, but the object manager may relinquish the ownership of some data
to other object manager(s) at a later time.

Object Manager

Distributed Cache Manager

Local Cache Manager

Ownership
Manager

API

Object-Page Mapping

Cache Interaction

Figure 2. Detailed Object Management Layer

An ownership manager is the single module that handles data management for a
speci�c data partition. In Dynamo, an object manager always performs application
interaction, object to page mapping, and cache interaction, but it might only optionally
run an ownership manager only when it owns some data (see Figure 2). If an object
manager does not manage any data, then it does not have an ownership manager. The
ownership manager also grants and manages access locks on the data. It is the enforcer

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

6 j. yang, et.

of consistency control for the data which it owns. If exclusive access (e.g., write lock)
or shared access (e.g., read lock) is required, then the owner of the data is in control of
granting these permissions and also takes care of lock scheduling, dead-lock detection,
etc. Due to space limitation, we will not discuss consistency control in detail here.
When an application writes, inserts or deletes data in the data partition that

an owner manages, the ownership manager updates the secondary storage location
information, and requests physical storage management from the NAS. In the case that
the overall workload of a node increases and/or an increasing number of applications
try to access data owned by an object manager, the owner can decide to relinquish
parts of the management functions to other nodes in order to adapt to the environment.
Dynamo employs a data organization which supports e�ciently relinquishing and

re-assigning ownership management functions. We will describe the data organization
in the next section.

Data Organization to Support Dynamic Object Management

To support the dynamic data management, Dynamo employs a data organization
scheme that supports the exible assignment of object management to nodes.
Data in Dynamo is viewed in two ways: the system's internal view and the users'

view. The users' view is identical with the user interface of traditional persistent
object management systems. Users can create, access and update persistent objects,
and group persistent objects into clusters. A persistent object is identi�ed via a logical
descriptor (names, or persistent IDs). Persistent objects are mapped to data pages;
several objects might �t onto one page, or an object can be stored on several data
pages. The internal view, however, is speci�cally designed to support dynamic object
management functions, and is based on data pages.
Internally, the entire data universe is viewed as sets of sets of data pages each set

being uniquely identi�ed by an internal identi�er that is not known to the user. The
data universe is organized in a hierarchical manner as shown in Figure 3. At the
bottom level, a granule is a page, i.e., each entity represents a page. A page usually
consists of 8 KB data. At the level above, each entity represents a set of pages with
a varying number of pages per set. A granule at the next level up is called a cluster,
a set of clusters, set of sets of clusters, and so on. The top level contains a few to a
few hundred root entities each root entity representing a large set of data pages. This
structure is used to group and identify pages and groups of pages. These groups are
disjoint, i.e. a page can only belong to one group. Also, re-grouping functions are not
supported for the time being.
Each entity in the hierarchical structure is uniquely identi�ed. To keep track of

the parent-children relationship within the hierarchy, we use a pre�x-based naming
structure. Each level in the data management hierarchy scheme is represented by one
byte in the identi�er; the maximum fanout of a node is 255. The length of the identi�er
can be chosen by the system administrator, and depends on the overall data size of
the system. Typically, the identi�er size is 8 bytes, and it can address 1013 GB of data.
For example, an entity of level 4 in the hierarchy has the identi�er \1123000"; its

children can be identi�ed by keeping the same \1123" pre�x in their identi�er, i.e. an

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 7

. . . .

. . .

... ...

. . .

... ...

Set of Clusters of Pages

Set of Pages Set of Pages Set of Pages Set of Pages

Cluster of Pages Cluster of Pages

. . .

... ...

. . .

... ...

Set of Clusters of Pages

Set of Pages Set of Pages Set of Pages Set of Pages

Cluster of Pages Cluster of Pages

. . . .

. . .Set of ... Set of Clusters of Pages Set of ... Set of Clusters of Pages

Root Level Entity

. . .Set of ... Set of Clusters of Pages Set of ... Set of Clusters of Pages

Root Level Entity

. . . .

.

. . . .

. . . .

. . .

. . . .

. . . .

. . .

. . . .

...

Figure 3. Hierarchical Data Organization

entity with the identi�er \1123210" is a descendent of the former.
The pre�x naming structure can support the exible ownership management

e�ciently. Object managers and coordinators keep lists of entitiesy (in the hierarchical
view). If no data page exists for an entity, then this entity is null. We use a �eld in
an entity to record the exact number of children which its parent has. If an owner
recognizes that it owns all children of an entity, then it merges these entities, and
becomes the owner of the parent entity. Overall, the hierarchical data structure of
helps to signi�cantly compress the ownership management information. Without this
structure, then there would be one entry for each page, resulting in a vast size of the
management data.
In Dynamo, all pages of persistent object and all persistent objects of a user-de�ned

cluster are physically grouped together. A user can choose which persistent objects
should be put next to each other in the hierarchy. Once an ID is chosen for a data
page, it remains the same for the lifetime of that page.
Each internal entity of the data organization structure is stored within one data

page. Each entity has at most 255 entries; an entry for an entity consists of the node's
data page id and the disk id of this page's storage location. To �nd the actual storage
page location, an owner has to traverse the data hierarchy. It starts with the page
storing the locations of all root entities, and �nds the pages for the relevant root
entity's children, etc. Decomposing an object identi�er, the position of the relevant
entry in the page can be directly accessed (between 1 and 255). Each entity in the
hierarchy occupies one 8KB page. The maximum number of pages to be read before
the data page is reached is the height of the hierarchy. The average number of disk
I/O, which have to be performed, is much less than this because many internal entities
may be cached by the coordinator and the object managers.

yAn entity corresponds to an internal node in the hierarchical data organization.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

8 j. yang, et.

Assignment and Release of Object Ownership

In this section, we describe the process of initial ownership assignment via the
coordinator and the exchange of ownership between two nodes in more detail.

Initial ownership assignment

As described, the initial ownership assignment is performed by the coordinator
(which might be central or distributed). The coordinator is the only component that
knows about all data in the system, about owners, and which data is owned by which
owner. It manages the global ownership table entries which consist of the IP address
of the owner (0 represents no owner) for each highest level homogeneous entityz (as
shown in Figure 4). The initial table consists of all root entities; if a root entity is split
(because of ownership transfer), the old entry is deleted and the new entries of its
children are inserted. The same procedure follows for further splits for the ownership
of an entity. If all existing children of an entity has the same owner, the entries for
children entities are deleted, and the entry for the parent entity is inserted. This table
structure is designed to support the e�cient splitting and merging of ownership in
Dynamo.

entity IP address

13400000 131.179.99.79

12000000

0
.
.

20000000
.
.

131.179.99.69

Figure 4. Global Ownership Table

Initially, an object manager gets an object request from an application, and
determines the data page(s) on which the object is stored. The object manager tries to
�nd the owner of the data pages via the coordinator. If the coordinator determines that
the data is not `owned' yet, it assigns the requesting object manager as the owner. In
order to minimize this kind of request, the coordinator assigns a much larger partition
of the data to the object manager; however, since only parts of the additional data
will be accessed, the object manager gets only a minimal additional workload. The
coordinator identi�es the data entity containing the requested data pages in the data
hierarchy, and traverses the hierarchy upward to determine the largest subtree of the
hierarchy containing the requested pages, which is not owned yet. At system start-
up, this is a root entity within the hierarchy. The object-to-page-to-block mapping
information table for the whole entity is stored on a NAS disk, and the coordinator

zA highest level homogeneous entity is the entity whose owner is di�erent from at least one of its siblings.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 9

sends the storage location of this mapping table to the object manager which is the
owner. Additionally, it enters the IP address of the node into the global ownership
table determining the ownership relationship for the data entity.
Although, an owner is responsible for managing any further updates to the object-

to-page-to-block information table, it will regularly update the table to the previous
NAS disk to provide for stable information. The owner is responsible for writing back
the mapping information to external storage before it releases ownership either to
another object manager or the coordinator.

Re-Assigning Object Management at Run Time

When object manager A accesses data that is currently owned by object manager
B, A and B can decide whether the ownership of the data should be transferred to A.
Criteria for the ownership transfer are the workload on both machines, the intended
duration of data usage, and the estimate further usage of the data by the owner. An
object manager will be interested in keeping ownership of data if it expects to use
the data in the near future because of shorter round-trips to �nd, get, and manage
data than if the data would be managed by another node. If an ownership transfer is
desirable, B decides to transfer ownership of a subset of its data to object manager A.
The ownership migration process is illustrated in Figure 5.
We assume that the requested entity is v0; v0 is a descendant of v which is an entity

that is owned by object manager B. B decomposes v into a set of child entities; one of
the children contains v0. B checks whether it needs the child entity of v that includes
v0. If not, B transfers the ownership of the child entity to A. If there are locks on
parts of the hierarchy, the locks are also transferred to the new owner as part of the
ownership transfer.
If the owning object manager needs parts of the child entity, the owner decomposes

the child entity. The process is repeated until B �nds an entity that is a descendant of
v, contains v0, and which B estimates it will not use in the near future. The ownership
of this entity is transferred to A by B. If such an entity does not exist, no ownership
transfer will occur.
If object manager B wants to transfer the ownership of v1 to A, it noti�es the

coordinator. In turn, the coordinator starts an ownership transfer process similar to
a two-phase commit ensuring that A, B, and the coordinator have stable and actual
information about the ownership transaction. This is done as follows: B intends to
release entity v1 to A. Therefore, object manager B decomposes v into a set of
disjoint entities v1, v2, : : :, vk where

Sk
i=1 vi = v. B removes v1 from this set, and

sends all information associated with v1 (e.g., global cache information, NAS location
information, and lock information) to A.
Object manager A updates its ownership table by adding v1. It prunes its ownership

table to see whether it also owns v2, v3, : : :, vk. If it owns these data entities, A would
remove v1, v2, : : :, vk from its ownership table and put back v and continue the
pruning process until no more sub-entities can be removed. The goal of the pruning
process is to keep a minimal list of entities in the ownership table. After receiving the
noti�cation of ownership change, the coordinator updates its global ownership table

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

10 j. yang, et.

Node B
(new owner of v1)

Node A
(owner of v, later owner of v2)

Coordinator

Global Owner Table

Core Node

7 15

1. Object manager on node B contacts the coordinator to determine the owner of
 data entity v1.
2. The coordinator checks the global cache table for the owner of v1.
3. The coordinator sends back the information that the object manager on Node A is the
 owner of v which is a parent of v1.
4. The object manager B contacts object manager A to request ownership of v1.
5. The object manager A decides to split v into v1 and v2 (the only fanout of v), and packages the
 global cache information for v1.
6. The object manager A notifies the coordinator about the impending ownership transfer of v1 toB.
7. The coordinator updates the global ownership table, splits v into v1 and v2, updates the owner
 information, and locks the entry for the time being.
8. Now, object manager A sends all necessary NAS, cache and lock information to object manager B.
9. Object manager B updates its local tables, stores the NAS information, and updated its distributed
 cache table with the cache location of the newly owned data of v1.
10. Following, object manager B notifies the coordinator that it finished updating its information.
11. The coordinator notifies object manager A to delete the ownership information of v1.
12. Object manager A acknowledges the deletion to the coordinator.
13. The coordinator notifies B that it is now the owner of v1, and
14. Object manager B acknowledges.
15. The coordinator unlocks the entries of v1 and v2 in the global ownership table.

Object Manager/
Owner

5

6

Cache Manager

9

10
1

3

v1 node B
v2 node A

4

8

11

2

Object Manager/
Owner

Cache Manager

12

13

14

Figure 5. Ownership Migration

using essentially the same procedure as A and B. Figure 5 shows the major steps
involved in ownership transfer. During the transfer process, B is considered as the
owner of the data. However, any request to the data being transferred is blocked until
the transfer process is completed. The standard two phase commit recovery is used if
during the transfer, A, B, or the coordinator crashes.

Cooperative Caching

In this section, we describe the details of cooperative cache management in Dynamo.

Page Retrieval

Page retrieval from either external storage or remote caches is the most basic
functionality of any cooperative caching scheme. In Dynamo, page retrieval includes
some of the following procedures as illustrated in Figure 6.

1. Cache Discovery. As the name indicates, this procedure is used to discover the
node on which a cached copy of the desired data exists if there exists one.

2. Local page retrieval. If the cached copy of data is stored in the local cache, then
this procedure will be invoked to load the page into the application user space.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 11

3. Remote page retrieval. This procedure is designed to fetch a cached copy of the
data from a remote node to the local cache. This procedure is invoked if the data
is not cached locally.

4. Disk page retrieval. If there is no cached copy anywhere in Dynamo, then this
procedure has to be invoked to fetch the page from disk(s).

5. Page Replacement. If there is no space on a node to load the data, then some
existing page(s) have to be replaced.

Does the object
manager know where

the page is cached?

No

Yes

Is the page
cached locally?

Local Page Retrieval

Is the page
cached by some
remote node?

Disk Page Retrieval

No

Yes No

Yes

Remote Page Retrieval

Does the local
memory have space to

hold the new page?

Cache Replacement

Cache Discovery

Yes

No

End

Start

Figure 6. State Diagram of Page Retrieval

Each of these �ve procedures is described next in some detail.

Cache Discovery

Figure 8 describes the operations involved in cache discovery. Assume that an
application on node A tries to access data owned by the object manager on node
B. The application �rst contacts the local object manager with the ID of the desired
object and the o�set, length of the data in the object (Step 1). For example, an
application may ask for 100 bytes of data starting at the 200th byte of object \foo".
The object manager �rst performs object to page mapping and identi�es the desired
page(s). Then the object manager checks whether it already knows the owner of the
data (Step 2). If not, it then contacts the coordinator for this information (Step 3).
The coordinator of the data is always on a well known core node. This can be achieved
by assigning data pages to coordinators based on page IDs, e.g., hashed page ID. The
coordinator, then, looks up its global ownership table (as illustrated in Figure 4) to
identify the owner (Step 4), and returns the ID of the owner and the highest level
homogenous entity which contains the data page to the object manager on A (Step 5).
For example, if the requested data page is `1234211' and the object manager B owns
`123000', then object manager B will return `123000' to A. Note that if the owner
of some data has become known to the local object manager previously, the above
process is omitted. If object manager A requests data page `1234111' later, it does not

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

12 j. yang, et.

need go to the coordinator for the ownership information. Then, the object manager
on A sends a message to its peer who owns the data (i.e., the object manager on B)
to request the proper lockx and ask for the ID of the node where the desired data is
cached (Step 6). If the desired data is large, then there might be multiple owners, each
of which owns part of the data. Without loss of generality, we assume that only one
owner owns the requested data.
The owner of the page(s) uses its data page cache table to determine where the

desired pages are located (Step 7). A \data page cache table" is maintained by each
distributed cache manager. On each node, the data page cache table records which
node has a cached copy of a locally owned data page. As shown in Figure 7, each entry
in the data page cache table consists of four �elds: pageID, status, cached node ID
(represented by the IP address of the node), and intention set. The status of a page
could be one of the follows.

1. single: Only a single copy of the page resides in the memory of some node.
2. replicated: The page is cached by multiple nodes.

The cached node ID �eld is a linked list of the IDs of the nodes which cache a copy of
the page identi�ed by pageID.

pageID status nodeID

00112233 single 131.179.99.79

00331100 replicate

.

.

.

.

.

.

.

.

.

131.179.99.79
131.179.99.59

131.179.99.49

Intention Set

131.179.99.79

131.179.99.59

131.179.99.49

.

.

.

Figure 7. Data Page Cache Table

If the desired page is cached, then the owner will return the IP address of the node
which holds the cached page (Step 8). Otherwise, the ID of the disk which stores the
page will be returned with the page ID.
This cache discovery procedure is invoked if the object manager on A does not

know where the page is cached. However, if this information is already known by the
local object manager, it will directly retrieve the page as described in the following
subsections.

Local and Remote Cache Page Retrieval

If the page resides in the local memory, then the object manager requests the local
cache manager (via the DCM) to locate and load the page into the application user
space. This is shown in Figure 9.

xIn Dynamo, we assume the page-oriented locks unless otherwise speci�ed.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 13

Object Manager

Distributed Cache Manager

Local Cache manager

Node A
(retriever)

Coordinator

Object Manager

Distributed Cache Manager

Local Cache manager

Node B
(owner)

4

3 5

6

8 7

1. The application sends a request to the object manager.
2. The object manager checks its local cache to see whether it already knows the owner.
3. If the owner is unknown, the object manager on node A sends a request to the
 coordinator to obtain the address of the onwer of a page.
4. The coordinator checks the global ownership table to locate
 the owner.
5. The coordinator returns the ID of the owner (e.g., node B) to
 the object manager on node A.
6. The object manager on node A sends a request to the object manager
 on node B to ask which node has a cached copy of the page.
7. The object manager on node B checks the cache table to find the node which
 caches the page.
8. The object manager on node B returns the ID of cache holder to
 the object manager on A if the page is cached at some node. Otherwise the ID of
 the disk which stores the page is returned.

Application 1
2

Figure 8. Cache Discovery

If the page resides on other node, the remote cache retrieval procedure has to be
invoked. The distributed cache manager plays an important role in retrieving a remote
cached page. The entire procedure is illustrated in Figure 10.
After determining the location of the cache holding the desired page, the object

manager forwards the page ID and the node ID of the cache holder to its distributed
cache manager (Step 1). The distributed cache manager sends a request with the page
ID to its peer on the cache holder (say node C) (Step 2). After obtaining the page ID,
the distributed cache manager on node C contacts its local cache manager to locate
the page in its memory (Step 3 | 5), and then sends back the page to its peer on

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

14 j. yang, et.

Object Manager

Distributed Cache Manager

Local Cache Manager

Node A
(retriever)

1. The object manager forwards the page ID to
 the local cache manager via the distributed
 cache manager.
2. The local cache manager locate the cache in
 the memory.

2

1

1

Figure 9. Retrieve a Page Locally

Object Manager

Distributed Cache Manager

Local Cache Manager

Node A
(retriever)

Object Manager

Distributed Cache Manager

Local Cache Manager

Node C
(holder)

1. The object manager on node A forwards the page ID and the node ID of the cache holder
 (e.g., node C) to the distributed cache manager on node A.
2. The distributed cache manager on node A sends a request (with the page ID) to
 the distributed cache manager on node C.
3. The distributed cache manager on node C asks its local cache manager for the page.
4. The local cache manager on node C locates the page in its memory.
5. The local cache manager on node C returns the address of the page to the distributed cache manager.
6. The distributed cache manager on node C returns a copy of the page to the distributed
 cache manager on node A.
7. The distributed cache manager store the copy in the memory through the local cache manager.

1

2

3

4

5

6

7

Figure 10. Retrieve a Page from a Remote Node

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 15

node A (Step 6). Finally, the distributed cache manager on A stores the page in local
memory via its local cache manager (Step 7).

Disk Page Retrieval

As illustrated in Figure 11, if the page is not cached, the object manager forwards
the page ID and disk ID to the local cache manager via the distributed cache manager
(Step 1). The local cache manager then sends a request to the I/O manager on the
disk controller (Step 2). The I/O manager, in turn, locates the page on its disk (Step
3) and returns it to the local cache manager of the retriever (Step 4).

Object Manager

Distributed Cache Manager

Local Cache Manager

Node A
(retriever)

I/O Manager

Disk Controller

2

4
3

1. The object manager forwards the page ID and
 disk ID to the local cache manager.
2. The local cache manager sends a request to the
 I/O manager with the page ID.
3. The I/O manager locates the page in the disk.
4. The I/O manager sends the page back to the local
 cache manager.

1

1

Figure 11. Retrieve a Page from Disk

Every time a page is fetched from a disk or a remote node, the local cache manager
stores the page in its memory. However, if the local memory is full, some page has to
be replaced. This page replacement procedure is discussed in the next subsection in
detail.

Page Replacement

If a page in memory has to be replaced, this page can either be evicted to another
node or simply be discarded. This process is illustrated in Figure 12.
First the local cache manager on A �rst generates the local candidate set S for page

replacement according to rules such as LRU (Step 1). All pages in S are replaceable.
Let B be the node which owns the most pages in S. Then the local cache manager on
A forwards to its distributed cache manager the ID of B and the set of pages owned
by B in the candidate set S (Step 2). The distributed cache manager on A, in turn,
sends a request to its peer on node B to ask the status and the intention sets of these
pages (Step 3).
The intention set of a data page consists of the nodes which have accessed the page

more than a certain number of times within a short period (e.g., past 10 minutes).

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

16 j. yang, et.

Object Manager

Distributed Cache Manager

Local Cache Manager

Node A
(retriever)

Object Manager

Distributed Cache Manager

Local Cache Manager

Node B
(owner)

3
5

4

1

2 6

7
I/O Manager

Disk Controller

8

Object Manager

Distributed Cache Manager

Local Cache Manager

Node C

9

10

14

11 13

12

15

1. Local cache manager (on node A) generates the candidate set for page replacement
 and finds the node (say, node B) who owns the most pages in the candidate set.
2. The local cache manager on A forwards the ID of B and the set of pages owned by
 B in the candidate set to the distributed cache manager on A.
3. The distributed cache manager on A sends a request to the distributed cache manager
 on B to ask for the status and the intension set of these pages.
4. The distributed cache manager on B checks the data page cache table for the information.
5. The distributed cache manager on B sends back the status and intension sets for those pages.
6. The distributed cache manager on A forwards this information to its local cache manager.
7. The local cache manager on A chooses a page to be replaced based on the information it obtained,
 and it uses the lottery-based algorithm to chose a node (say, node C) for page eviction.
8. If this page is dirty, the local cache manager writes it back to the disk.
9. Then the local cache manager on A forwards the IDs of the page and node C to the
 distributed cache manager.
10. The distributed cache manager sends the replaced page to the distribute cache manager on C.
11. This distributed cache manager on C forwards this page to its local cache manager.
12. The local cache manager on C stores this page in its local main memory.
13. The local cache manager on C returns an acknowledgement to the distributed cache manager.
14. The distributed cache manager, in turn, sends an acknowledgement to the distributed cache
 manager on A.
15. The distributed cache manager on A sends a message to the distributed cache manager on B
 to inform the change of cache location.
16. The distributed cache manager on B updates its cache table.

16

(new holder)

Figure 12. Page Replacement

The goal is to improve the local cache hit ratio of nodes within the intention set (as
shown in the experimental results ection). Intuitively, nodes in the intention set of
a data page are those which tend to access this page frequently. For any node, it is
preferable to cache locally the pages which it accesses frequently. In Dynamo, when
the local cache manager decides to replace a page, this page will be evicted to the
memory of a node in the intention set if possible. The motivation is that nodes in the
intention set have higher probability to access the evicted page than other nodes and
thus eviction to a node in the intention set will tend to increase the probability of a
local cache hit. The intention set information is maintained in the data page cache
table by the object manager who owns the page. As we mentioned before, every access

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 17

to a page has to go through the object manager (to request a proper lock), so little
additional overhead is required for the object manager to maintain the intention set.
For any page, its intention set could be empty or consist of one or more nodes. If the
intention set is empty or no node in the intention set has available memory, then this
page is evicted to some other node{.
When the distributed cache manager on B receives a request on status and the

intention set of pages, it will check the data page cache table and return back the
requested information (Step 4, 5). In turn, the distributed cache manager on A
forwards this information to its local cache manager (Step 6). The local cache manager
then chooses a page owned by B to be replaced according to the following criteria (Step
7):

� If there is a page whose status is replicated, then choose a replicated page according
to the LRU principle.

� Otherwise, if there is a clean page whose status is single, then choose a single
clean page by LRU.

� Otherwise, choose a single dirty page by LRU.

If the replaced page is dirty (the third case), then the local cache manager contacts
the I/O manager of the disk to write back the page (Step 8). (This step is not necessary
if the page is clean.) Let IS be the intention set of the replaced page. A lottery-
based algorithm is used to choose a node in IS to which to evict the page. The
objective is to maintain a \near optimal" remote cache hit ratio with little overhead
(as demonstrated in the experimental result section). Intuitively, for a node, it does
not matter which other node caches the evicted page for it as long as the page can be
cached by some node. Therefore, a restricted global LRU (as implemented in PGMS
[22]) is not necessary due to the large overhead incurred. Instead, we use a lottery-
based approach to maintain the same remote cache hit ratio with little overhead.
Each node in the intention set has some probability to be chosen. Each probability is
proportional to the size of available memory at the node. For example, a node with 10
MB spare memory is twice likely to be chosen as a node with 5MB spare memory. In
order to achieve this, each node multicasts the size of its available memory whenever
such size changes by a certain percentage.
Let C be the selected node. The local cache manager on A forwards the node ID of

C and the address and page ID of the replaced page to its distributed cache manager
(Step 9). The distributed cache manager will then send the page to its peer at node
C (Step 10). The distributed cache manager on C stores this page via its local cache
manager (Step 11 | 13) and sends back an acknowledgment to its peer at A (Step 14).
Finally, the distributed cache manager sends a message to its peer at the owner (node
B) to update the data page cache table accordingly (Step 15, 16). Note that if node
C does not have space to hold the page, this page would be simply discarded. The
experimental results section presents results from a performance study (measurement
and simulation) of these procedures which demonstrates their e�ectiveness.

{Note that this scheme can be easily �t into any general scheme which supports cooperative caching.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

18 j. yang, et.

Fault Tolerance

In a LAN system, any node may fail at any time. Therefore, fault tolerance and failure
recovery becomes a crucial issue in Dynamo. Coordinators are only located on core
nodes, but object managers and cooperative cache managers may be located on any
nodes. We consider core node failure and non-core node failure separately. We use
a replicated coordinator scheme to guard against core node failure. In other words,
the set of data managed by coordinators overlaps. For a given data item, there is a
prime coordinator and a secondary coordinator, which are located on di�erent core
nodes. When the prime coordinator fails, the secondary coordinator will assume the
responsibility of the prime coordinator. This requires that when ownership transfer
occurs, both coordinators need to participate in the process. The object manager and
cache manager may also exist on core nodes, the recovery of the object manager and
cache manager on core nodes is the same as the recovery process of these managers
on non-core nodes.
Another type of failure node is a non-core node. In this case, the object manager, the

distributed cache manager, and the local cache manager on that node are no longer
available. However, other surviving nodes may still request the data owned by the
crashed object manager, and of course, these requests can not be served. We apply a
crash recovery protocol to handle this situation. When an object manager requests data
from another object manager, it has a timeout mechanism. If the object manager does
not respond within the timeout period, the requesting object manager will report to the
coordinator that the other object manager could have crashed. Then, the coordinator
will contact the speci�ed object manager. If the object manager still does not respond,
the coordinator will revoke all ownership of the speci�ed object manager, and assign
its entities to the non-owner table. Also during normal operation, each object manager
maintains logs and periodically writes new log entities to network attached storage so
that during a crash, the coordinator can fetch the log (the location of the log on the
disks is known to the coordinator) and roll back the changes to the last consistent
state. This procedure is similar to that used in distributed server failure recovery.
Since the entire node crashes, all information maintained on that node is assumed

to be unavailable. If a surviving node wants to access an object owned by the crashed
node, then it has to go through the coordinator and retrieve the data page from disks.
When a node recovers from a crash, the object manager on that node does not own

any objects initially. As time goes on, the object manager may regain ownership of
some objects and the cooperative manager may rebuild the cache through normal data
access.

Experimental Results

Implementation Issues

Our Dynamo prototype is implemented in C and is running on a workstation farm
running the Sun Microsystems Solaris 2.6 operating system. The cluster of UltraSparc
machines with 167 MHz CPU and 80 MB main memory are interconnected via 100
Mbit/sec Ethernet. This is the environment in which we conducted our experiments.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 19

The page size is 8KB and we use an 8-byte ID for each page and internal entity in the
hierarchy.
The cooperative cache management algorithm is implemented on top of the UNIX

memory management layer. For the lottery-based page evictor algorithm, the UNIX
function random() is used to generate random numbers. To implement the intention
set, each object manager keeps track of the number of requests for each object from
each node. Time is divided into 10 minutes epochs. At the end of each epoch, the
object manager reevaluates the intention set for each object. A node will be put into
the intention set of an object if one of the following two criteria are satis�ed.
1. The node has requested some access lock for (part of) the object more than 10

times in the past epoch.
2. The node has held the lock for (part of) the object more than 5 minutes.

The ownership table and cache tables are implemented using a hash table. The data
is stored on a 7200RPM Quantum Atlas III SCSI disks drive with 7.8ms average seek
time. The disks are attached to an idle workstation to simulate the e�ects of network
attached storage.
Since there are several contributions of Dynamo, i.e., lottery-based page eviction,

intention set, migration of management, we distinguish each technique in the subscript.
For example, Dynamol;i denotes the Dynamo implementation with the Lottery-based
eviction algorithm and intention set technique while Dynamol;m denotes the Dynamo
implementation with lottery-based eviction and migration of management techniques.

Path Length Measurement

In this section, we present measurements of the path lengths of di�erent operations
in Dynamo. All the path length measurements are the average of 50 iterations. Table I,
shows the average path length of each operation in cache discovery process. The
operation label corresponds to the label in Figure 8. The latency between any two
nodes is approximately 35�s.

Operation Label Node CPU time (�s) Net (�s) total (�s)
2 retriever 1 35 36
3 coordinator 3 0 3
4 coordinator 1 35 36
5 retriever 1 35 36
6 owner 3 0 3
7 owner 1 35 36

Table I. Path length of cache discovery process

After discovering where the cache is, the remote page retrieval process (as illustrated
in Figure 10) is invoked if there exists a cached copy of the data in remote memory, but
not local memory. Table II shows the average path length of each step in the remote
page retrieval process.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

20 j. yang, et.

Operation Label Node CPU time (�s) Net (�s) Total (�s)
1 retriever 2 0 2
2 retriever 2 35 37
3 holder 2 0 2
4 holder 2 0 2
5 holder 1 0 1
6 holder 14 785 799
7 retriever 78 0 78

Table II. Path length of remote page retrieval

When a new page has to be loaded into main memory, some page has to be replaced if
the memory is fully utilized. The page replacement process was described in Figure 12.
Table III shows the average path length of operations involved in the page replacement
process.

Operation Label Node CPU time (�s) Net (�s) Total (�s)
1, 2 retriever 5 0 5
3 retriever 1 35 36
4 owner 3 0 3
5 owner 1 35 36

6, 7, 9 retriever 6 0 6
10 retriever 15 788 803

11, 12, 13 new holder 44 0 44
14 current holder 2 34 36
15 retriever 5 35 40
16 owner 8 0 8

Table III. Path length of page replacement

From the above tables, we can see that the majority of the elapsed time is spent in
sending the data page (8KB) across the network. We used a 100 Mb/s Ethernet in
this experiment, but faster networks (e.g., Myrinet, Fibre Channel, etc) which exceed
1 Gb/s bandwidth are becoming common place now, and the overall access time will
be much faster as these are deployed.

Benchmarks

To characterize the performance of Dynamo over a wide range of workloads, we used
a number of real applications and synthetic benchmarks, and ran them on the Dynamo
prototype:

1. OO7 is an object-oriented database benchmark that builds and traverses a parts-
assembly database [5]. Our experiments traverse an existing 650MB database
mapped into memory.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 21

2. Data-mining application is an association discovery program applied to a
200MB market basket data �le. Our experiments perform several full sequential
scans of the entire data set. Between each consecutive scans, the con�dence and
support of each potential association rule are computed [2]. This is a data and
compute intensive program.

3. ScourNet is a trace of a public web search engine \scour.net". scour.net uses
an 1 GB database to answer queries.

4. Random randomly access all pages in a 200MB �le.

Lottery-based Page Eviction and Intention Set

In this set of experiments, we are evaluating the bene�ts of employing the technique
of lottery-based page eviction and intention set by comparing it against random
eviction and the PGMS model [22].

In the random eviction scheme, when a page is evicted, the page will be evicted to
any node in the LAN with the same probability. If the node to which the page is evicted
has no available memory, then the page is simply discarded. However, since each node
does not have a global picture of the memory usage at other nodes, the overall cache
hit ratio could be impacted when there are a signi�cant number of nodes in the LAN
without any available memory. (Pages evicted to these nodes will be discarded.)

In PGMS, the least loaded node in the system is chosen as the leader periodically.
The leader receives the bu�er information of all nodes, and centrally computes the
replacement set of pages for each node. The length of each epoch is usually between
5 to 10 seconds. The goal of PGMS is to utilize the available global cache so that the
average access latency can be minimized. However, this approach has some potential
problems: theoretically, leader election on a general distributed computer systems is
impossible [17]. Although the leader may be elected successfully in the current local
area network environment with very high probability, it requires the synchronization
of all nodes. Moreover, with an increasing number of nodes, the leader has to spend
more CPU cycles to compute the possible number of pages can be replaced on each
node. In addition, with a larger node population, it is more likely that the number
of pages which can be replaced on a node will change more rapidly and epochs have
to be restarted. Therefore, a signi�cant overhead may occur and scalability can be
impacted. To estimate the overhead for the PGMS model, we assume that all nodes
have to send a message about its cache status (e.g., when the last time it is accessed)
of every page in the cache to the leader at the beginning of each epoch and the leader
has to scan at least one of these messages once. For example, if each node has 64MB
cache, then it has to send a 8KB message to the leader (assuming it takes one byte to
encode the cache status of a cached page and the page size is 8KB). In the following
subsections, we investigate the cache hit ratio and response time of these schemes in
detail. All experiments were performed with 5 nodes but varying memory size per
node across experiments in 8.3.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

22 j. yang, et.

Cache Hit Ratio

There are two kinds of cache hits in a cooperative caching system, local cache hit
(when the desired data page is located in the local cache) and remote cache hit (when
the desired data page is located in the remote cache). Figure 13(a) and (b) show the
average local and remote cache hit ratio, respectively.
For the four workloads investigated here, LRU is used as the local page replacement

algorithm. It is evident that Dynamol;i has a signi�cant higher local cache hit
ratio than the other two schemes except for the random page access workload. The
improvement mostly comes from intention set technique because it is more likely that
a page is evicted to a node that might access the page in the near future (which will
result a local cache hit). However, in the random page access workload, since every
node has the same probability in accessing each page, then there is no bene�t to use
the intention set technique.
The remote cache hit ratio is the ratio of the number of remote cache hits over the

number of remote cache requests. With the OO7 and ScourNet workloads, the remote
cache hit ratio ofDynamol;i and the PGMSmodel is similar. The page eviction scheme
in PGMS model considers the page access pattern globally. It computes a queue of
candidate pages for replacement on a centralized machine, based on the latest reference
time (i.e., global LRU algorithm). As a result, when a page needs to be replaced from
the global cache, the page at the head of the queue will be chosen. On the other hand,
in the lottery-based eviction algorithm, a set of candidate pages for replacement will be
chosen. However, there is no strict order of replacing these pages. The main di�erence
between Dynamol;i and the PGMS model is the selection of the node from which a
page will be evicted. For the page evictor, it does not matter which node caches the
evicted page. For the cacher, it does not matter which pages it caches for other nodes
as long as it does not loose any useful pages. With the lottery-based eviction scheme,
the probability that the evicted page will be discarded is very low when there is any
available memory. Therefore, Dynamol;i and the PGMS model have a similar remote
cache hit ratio.
Moreover, the remote cache hit ratio of Dynamol;i and the PGMS model is higher

than that of the random eviction scheme. If half of nodes have available memory while
the other half have no available memory, with the random eviction scheme, a page will
be evicted to a node which has no available memory with 50% probability, and thus
the page will be discarded from the global cache with 50% probability. However, with
the PGMS and Dynamo1 scheme, the page will be evicted to a node with available
memory, and hence, the page will be kept in the global cache.
With the data mining workload, when the memory is small (i.e., the entire data set

can not be �t into the global cache), the PGMS model and Dynamol;i scheme have
the similar remote cache hit ratio which is higher than the random eviction scheme
due to the same reason as in the ScourNet and OO7 case. When the memory on each
node is large enough to hold the working set in the global cache, the remote cache hit
ratio becomes constant.
However, with the random page access workload, all three schemes have a similar

remote cache hit ratio because all pages have the same probability to be accessed in the

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 23

PGMS DynamoRandom

(a)

Memory Size (MB)

L
oc

al
 C

ac
he

 H
it

 R
at

io
 (

%
)

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

10

20

30

40

OO7 Dataming ScourNet Random

Memory Size (MB)

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

 2

 4

 6

 8

OO7 Dataming ScourNet Random

(b)

Sp
ee

d
U

p

(b)

Memory Size (MB)

R
em

ot
e

C
ac

he
 H

it
 R

at
io

 (
%

)

20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

20

40

60

80

OO7 Dataming ScourNet Random

l,i

100

Figure 13. Comparison of Three Cache Eviction Schemes

near future. As a result, it does not make any di�erence on which page is replaced out
from the global cache. When the collective working set size is less than the collective
memory on all nodes, the remote cache hit ratio remains constant with respect to the
increase of memory because the entire working set can be �t into the global cache.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

24 j. yang, et.

Average Performance

The speed up factor is chosen to describe the average response time of retrieving a
data page under the three schemes, respectively. We use the non-cooperative caching
scheme as the base. The speed up factor is the ratio of the average time to fetch a page
in a non-cooperative caching system over the average time to fetch a page with either
random eviction, PGMS model, or the lottery-based eviction scheme. Figure 13(c)
shows the speed up factor of the three cooperative caching scheme with respect to the
non-cooperative caching model.
The speed up factor changes with memory size on each node. When the collective

overall memory size is less than the working set, the speed up factor increases because
the remote cache hits increase. (The remote cache hits are one important bene�t of
cooperative caching.) As a result, fewer page faults occur. However, when the collective
overall memory size is larger than the collective working sets, the overall cache hits
remain same since all working sets can be cached in global memory. With more memory
on each node, more data can be cached locally, and less data is cached remotely. Thus
the bene�ts of cooperative caching decrease. As a result, the speed up factor decreases.
This is illustrated in the data mining and random page accessing workload.
In general, when the collective memory of all �ve nodes is less than the working

set, the random eviction scheme has the lowest speed up factor because the random
scheme has the lowest overall cache hit ratio. Although Dynamol;i has a slightly lower
overall cache hit ratio compared to that of the PGMS model, it has the highest speed
up factor due to its lower overhead than that of PGMS model in this scenario.

Individual E�ects

Figure 13 shows the combined bene�ts of intention set and lottery-based page
eviction techniques. We choose the ScourNet workload as the example to show the
individual e�ects of intention set and lottery-base page eviction schemes (as illustrated
in Figure 14).

20 40 60 80

R
em

ot
e

C
ac

he
 H

it
 R

at
io

 (
%

)

20

40

60

80

L
oc

al
 C

ac
he

 H
it

 R
at

io
 (

%
)

10

20

30

40

20 40 60 80 20 40 60 80

 2

 4

 6

 8

Sp
ee

d
U

p

PGS Model Random EvictionDynamoDynamo l,s l

Memory Size (MB)

Figure 14. Individual Bene�ts of Lottery-base Page Eviction and Intention Set

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 25

We can see that the lottery-based page eviction scheme can achieve a similar remote
cache hit ratio as the PGMS model as the reasons explained before, however, it has
a lower overhead as the PGMS model. On the other hand, the intention set has a
signi�cant impact on the local cache hit ratio. As a result, on average Dynamol;i
outperforms Dynamol, which slightly outperforms the PGMS model.

Scalability of Dynamo Caching Scheme

In this section, we analyze the scalability of Dynamol;i, i.e., performance as the
number of nodes in the LAN increases. In this set of experiments, we �x the size of
memory on each node to 60MB and vary the number of nodes. Figure 15 (a) and (b)
show the overall cache hit ratiok and average performance, respectively.

O
ve

ra
ll

C
ac

he
 H

it
 R

at
io

 (
%

)

20

40

60

80

2 4 6 8 10

OO7 DataMining ScourNet Random

Number of Nodes

(a)

Sp
ee

d
U

p

 2

 4

 6

 8

OO7 DataMining ScourNet Random

Number of Nodes

(b)

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

PGMS DynamoRandom l,i

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 15. Scalability of Four Schemes

With the OO7 and ScourNet workload, Dynamol;i and the PGMS model have a
similar overall cache hit ratio, which is signi�cantly higher than the random eviction
scheme. This is explained with similar reasoning as in the previous subsections. Since
the entire working set of the random access workload and data mining workload can

kOverall cache hit ratio is the ratio of the local cache hits and remote cache hits over the overall number of
requests.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

26 j. yang, et.

�t into the main memory of four nodes, all schemes have the same overall cache hit
ratio when the number of nodes is larger than 4.
Performance is measured in terms of the speed up over the non-cooperative caching

scheme. With OO7, data mining, and ScourNet workloads, Dynamol;i has the best
performance. However, with the random page accessing workload, the random eviction
scheme may outperform others (when the entire data set can be contained in the main
memory). This is mainly due to that there is no useful page access pattern and the
random page eviction scheme has the least overhead.

Migration of Management

Here we examine the e�ects of migration of management by comparing Dynamol;i;m
(the Dynamo implementation which employs dynamic migration of management
with lottery-based page eviction and intention set schemes) against the Dynamo
implementation which employs the lottery-based page eviction and intention set with
static partition of management, denoted as Dynamol;i. In other words, in Dynamol;i,
a given object is managed by a given node. We evaluate the bene�ts of migration of
management in the aspects of scalability (increasing number of applications on each
node) and adaptability (changing data access pattern).

Scalability

In this experiment, we �x the memory on each node to 60MB and the number of
nodes to 5. All objects are partitioned into �ve non-overlapping sets; a node is assigned
to manage a set of objects. In Dynamol;i, the assignment is permanent, however,
in Dynamol;i;m, the assignment of management may change at execution time. The
workload is generated as follows: an application requests data initially managed by
node A with 40% probability and requests data initially managed by each of the other
nodes with 15% probability. The average size of data in a request is 2KB and after
receiving the requested data, it takes the application 5 seconds to process the data on
average.
Figure 16(a) shows the average response time for an application to receive the

data as a function of the number of applications on each node. When the number
of applications on each node is small (i.e., less than 4 applications), Dynamol;i and
Dynamol;i;m have the same average response time for page retrieval because the system
is lightly loaded. When the number of applications is large, the average response time
of data retrieval with Dynamol;i is increasing at a much faster pace than that of
Dynamol;i;m because uneven distribution of management makes Dynamol;i saturate
faster.

Adaptability

As in the previous experiment, the memory on each node is set to 60MB and there
are a total of 5 nodes in the LAN. The workload in this experiment is generated in
the same manner as in the previous experiment except for one di�erence: the heavily

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 27

Number of Applications
on Each Node

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

of
 P

ag
e

R
et

ri
va

l
(m

ili
-s

ec
)

(a)

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

of
 P

ag
e

R
et

ri
va

l
(m

ili
-s

ec
)

(b)

2 4 6 8 10
0

10

20

α

2K 4K 8K 10K6K

0

3

6Dynamo
Dynamol,i,m

l,i

Figure 16. Comparison of Three Cache Eviction Schemes

loaded node changes with time. For the �rst � requests, the heavily loaded node is A;
for the next � requests, the heavily loaded node is B, then C, then D, and so on.
Figure 16(b) shows the average response time for a page request. Here � can be

viewed as the duration of one page access pattern phase. When � is small (i.e., the
hot spot changes very rapidly), migration of management does not help because the
migration itself takes a signi�cant amount of resources and time. (The migration of
management is invoked only when a signi�cant change of workload or data access
pattern is detected.) When the � is larger (i.e., the change of data access pattern is
more permanent), Dynamol;i;m outperforms Dynamol;i signi�cantly due to the more
even distribution of workload on each node with Dynamol;i;m.

Brief Summary

From these experiments, we can see that Dynamo is especially bene�cial when the
entire data can not be �t into local cache and there exists some locality in the page
access pattern. We believe that most applications fall into this category. In such cases,
the intention set and lottery-based eviction scheme will be bene�cial.
Moreover, in general there is a skew in object access pattern and the hot spots change

over time, thus, creating a bottleneck in the object management. Dynamic migration
of management can eliminate the bottleneck in persistent object management.

Related Work

The work done in Dynamo is motivated by several systems such as NASD [12] which
employs `third-party transfer' of data from network-attached storage devices directly

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

28 j. yang, et.

to client machines. In the remainder of this section, we will compare Dynamo with
related �le system architectures, and cooperative caching strategies.
Initial work on a more scalable approach to client-server architectures was done by

Franklin, Carey and Livny [11]. Here, the server observes what the clients are doing
and uses the fact that a page might be in some client's main memory so that the server
is able to serve other clients' requests directly from a client's cache instead of its own
limited bu�er or disk resources.
The serverless network �le system (xFS) was developed at the University of

California at Berkeley [1] as part of the NOW (Network of Workstations) project
to address the problem of a highly scalable �le system in a distributed environment.
In NOW, workstations are connected by a fast LAN and disk devices are attached to
all workstations. Part or all of the client workstations can act cooperatively as a �le
manager or storage server, or both, and xFS employs a cooperative cache. Similar to
Dynamo, the �le manager and storage server are not a centralized system, but their
role can be taken by any client machine, and the work load is shared between clients.
In Dynamo, however, storage managers run directly on the CPU of network-attached
devices. This fact allows Dynamo to dynamically assign data management tasks to
any machine in contrast to xFS which statically assigns pages of a �le to be managed
by a particular �le and storage manager. Furthermore, the problem of how to utilize
frequently changing resources (e.g. new machines added to the LAN) in the most
e�ective way is not addressed in the xFS system.
There are two research directions related to overall global cache management: the

�rst focuses on a centralized management component that has a central view of the
caches of all clients and optimizes the page replacement strategy with respect to the
needs of all clients [7, 14, 22]. The second research direction focuses on global cache
replacement strategies that are managed by clients in a decentralized manner [7, 18].
Voelker et al. [22] proposed a globally managed prefetching and caching system, the
PGMS system. In PGMS, a node is selected as a leader which is the least loaded
node in the system. The leader receives the bu�er information of all nodes, and
centrally computes the replacement set of pages for each node. This is repeated
every 5 to 10 seconds. The goal of PGMS is to utilize the available global cache
so that the average access latency can be minimized. The approach, however, has
several potential problems. First, theoretically, leader election on a general distributed
computer systems is impossible [17]. Although the leader may be elected successfully
in the current local area network environment with very high probability, it requires
the synchronization of all nodes. Moreover, with an increasing number of nodes, the
leader has to spend more CPU cycles to compute the number of pages can potentially
be replaced on each node. In addition, with a larger node population it is more likely
that the number of pages which can be replaced on a node will change more rapidly
causing the frequency of new epoch to increase. Therefore, a signi�cant overhead may
occur and the scalability can be impacted.
In the original paper on cooperative caching by Dahlin et al. [7], several techniques

for cooperative caching are described, and the authors chose the decentralized N-
Chance Forwarding algorithm, used subsequently in xFS [1]; the algorithm tries to
avoid evicting pages from the cooperative cache for which there is no other copy

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

research staff member, ibm 29

within the cooperative cache, but rather is biased toward evicting replicated pages.
Instead of writing the last copy to disk, it is forwarded to a random peer client cache.
In Dynamo, we introduce the concept of intention sets so that page eviction candidates
are not forwarded to a random client, but to a client that is more likely to access the
page.
Sarkar and Hartman [18] introduce a decentralized global caching algorithm based

on hints. In contrast to the N-Chance Forwarding algorithm which is based on facts
about the global cache state, the hints-based algorithm is based on approximations
of the global state. In this work, it is predetermined which pages get evicted to the
global cache (master copies) and which are not (replicas), so that a client does not
need to contact a centralized manager to make the eviction decision. Instead, each
client makes guesses about the system's oldest blocks that it keeps in its memory,
compiling a global oldest block list which approximates a global LRU. Also, clients
requesting a page receive an access token from the server and a list of hints of the
most likely cache locations of the page. In Dynamo, exact information about cache
location is kept and provided to a client, so that `misses' are avoided. Still, since the
cache location management is done by clients, it is still highly e�cient and scalable.
Cao et al. [3, 4] also did work on cooperative �le caching, and investigated techniques

for e�cient prefetching of data into a cooperative cache. Prefetching, however, has not
yet been considered in Dynamo. Related work in the area of cooperative caching system
for object-based systems (persistent objects, object-oriented database management
systems) has been done in the Shore [6] system, and in Thor [15] and Hac [16].

Conclusion

We have presented the complete design for a scalable, fault-tolerant, cooperative
object management system for LAN environments that is dynamically adaptive to
con�guration changes. In addition, the design can adapt to shifting workloads and
hotspots in object access. The prototype system has been used to provide path length
measurements. We also proposed and evaluated an extension to cooperative cache
management algorithms in which the system attempts to place a page in a node that
is likely to access that page when it has to be replaced from the node on which it is
currently cached. Extensive performance studies have shown that this extension can
result in signi�cant improvements in page fault response times by increasing the hit
rate on remote nodes (rather than having to make a disk access).
Future work includes deployment and measurement of the system under actual

workloads. In addition, application speci�c \hints" for management will be explored
to see if signi�cant further performance improvements are achievable. Further work
on security issues are also warranted to extend this design to environments in which
it is not practical assume individual systems are \well behaved".

acknowledgements

This work was done when the �rst and second authors were in the University of
California, Los Angeles. Discussion with Greg Ham are also gratefully acknowledged.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

30 j. yang, et.

references

[1] . T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson, and others. Serverless network �le
systems. ACM Transactions on Computer Systems, Feb. 1996, vol.14, (no.1):41-79.

[2] . R. Agrawal, T. Imilienski, and A. Swami. Mining association rules between set of items in large
databases. Proc. ACM SIGMOD Conf. on Management of Data, 207-216, 1993.

[3] . P. Cao, E. Felton, A. Karlin, and K. Li. A study of integrated prefetching and caching strategies.
Proc. of the ACM SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
1995.

[4] . P. Cao, E. Felton, A. Karlin, and K. Li. Implementation and performance of integrated
applicaiton-controlled �le caching, prefetching, and disk scheduling. ACM Trans. on Computer
Systems, 14(4), November, 1996.

[5] . M. Carey, D. DeWitt, and J. Naughton. The oo7 benchmark. Proceedings of the ACM SIGMOD
Conference on Management of Data, 1993.

[6] . M. Carey, D. DeWitt, M. Franklin, N. Hall, et. al. Shoring up persistent applications. Proceedings
of the ACM SIGMOD Conference on Management of Data, 1994.

[7] . M. Dahlin, R. Wang, T. Anderson, and D. Patterson. Cooperative caching: using remote client
memory to improve �le system performance. Proceedings of First Symposium on Operating
Systems Design and Implementation (OSDI), 1994.

[8] . Dias, D.M., Balakrishna, R.I. Robinson, J.T., Yu, P.S., Integrated Concurrency-Coherency
Controls for Multisystem Data Sharing. IEEE Transactions of Software Engineering, Vol. 15,
No. 4, April 1989.

[9] . Fibre Channel Association. http://www.amdahl.com/ext/CARP/FCA/FCA.html.
[10]. M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levey, and C. Thekkath. Implemention global

memory management in a workstation cluster. Proc. of the 15th ACM Symposium on Operating
System Principles, December, 1995.

[11]. M. Franklin, M. Carey, and M. Livny. Global memory management in client-server DBMS
architectures. Proc. of the 18th VLDB Conference, 1992.

[12]. G. A. Gibson, D.F. Nagle, K. Amiri, F. W. Chang. File Server Scaling With Network-attached
Secure Disks. Performance Evaluation Review, June 1997, vol.25, (no.1):272-284.

[13]. E. Grochowski and R. F. Hoyt. Future Trends in Hard Disk Drives. IEEE Transactions on
Magnetics, May 1996, vol.32, (no.3, pt.2):1850-1854.

[14]. Avraham Le�, Philip S. Yu, Joel L. Wolf: Policies for E�cient Resource Utilization in a
Remote Caching Architecture. Proceedings of the First International Conference on Parallel and
Distributed Information Systems (PDIS), 1991.

[15]. B. Liskov, A. Adya, M. Castro, M. Day, S. Ghemawat, R. Gruber, U. Maheshwari, A.C. Myers,
L. Shrira: Safe and E�cient Sharing of Persistent Objects in Thor, SIGMOD'96, Montreal, 1996.

[16]. M. Castro, A. Adya, B. Liskov, A.C. Myers: HAC: Hybrid Adaptive Caching for Distributed
Storage Systems. Proc. of the ACM Symposium on Operating System Principles (SOSP'97),
Saint-Malo, France, October, 1997.

[17]. Nancy Lynch. Distributed Algorithms, Morgan Kaufmann Publishers, 1996.
[18]. P. Sarkar and J. Hartman. E�cient cooperative caching using hints. Proceeding of Third

Symposium on Operating System Design and Implementation (OSDI), 1996.
[19]. Scour Search Engine. http://www.scour.net
[20]. T. Tannenbaum and M. Litzkow. The condor distributed processing system. Dr. Dobb's Journal,

February 1995.
[21]. G. Voelker, H. Jamrozik, M. Vernon, H. Levy, and E. Lazowska. Managing server load in global

memory systems. Proc. of the ACM SIGMETRICS Conf. on Measurement and Modeling of
Computer Systems, 1997.

[22]. G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase, A. Karlin, and H. Levy. Implementing
cooperative prefetching and caching in a globally-managed memory system Proc. of the ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, 1998.

Copyright c 2000 John Wiley & Sons, Ltd. Softw. Pract. Exper., 0(0), 0{0 (2000)
Prepared using speauth.cls

